NOTE channelnumber,integer variable,integer variable
POINT channelnumber,integerexpression,integerexpression

Consider the following program segment. The NOTE command on line 10 stores
the sector number of the file opened on channel 1 in the variable, SECTORZ.
The current position in the sector is stored in SECTORPOSZ:

10 NOTE 1% ,SECTORZ ,SECTORPOS7

éO POINT 1% ,SECTORZ ,SECTORPOSZ

Suppose several disk operations have occurred between lines 10 and 90.
When line 90 is executed, the disk operating system returns to the file
position it was at when line 10 was executed.

10 OPEN "O",1Z,"TEST"
20 FOR TZ=1% TO 5%

30 IF T%=37% THEN NOTE 1% ,SECTORZ,SECTORPOSZ
40 T1Z=T%+5%:PUT 1%,T1%
50 NEXT T%

60 CLOSE 1%

100 OPEN "R",1%,"TEST"

110 POINT 1%,SECTORZ,SECTORPOSZ
120 GET 1%,TESTZ

130 PRINT TESTZ%

The above program creates the file named "TEST" on disk 1, and stores in it
the numbers 6, 7, 8, 9, and 10, SECTORZ and SECTORPOSZ will contain the
information on where the third number of the file is located. Line 100
opens the file in the random mode so that we can get just the third number.
The POINT command positions us at the start of the third number, and the
following command gets the number and stores it in TESTZ. Line 130 prints
'8', the third number of the file.

With POINT and NOTE you can set up a file, and GET and PUT to it without
reading or writing the whole file. The trick is to use the NOTE command
for, say, every sixteenth file element, and to store the sector and sector
position data in an array. Then, when you want to get to an element, you
use the data in the array with a POINT command to position as close as
possible to the element. Finally, you use GET commands to reach the
particular data element. If you have a big file and need to access records
quickly, this is one way to do it. You can even store the array in a file,
and when you want to work with the main file, you first read the array from
the disk. See reference manual section on NOTE for an example.

GET and PUT (alternate form)

There is an alternate form of GET and PUT which allows you to specify the
number of bytes to be transferred. For example, GET 1%,A%(0%),50% will
read 50 bytes from the file into the array AZ. Since an integer is two
bytes long this will read values for AZ(0Z) through A%Z(24%). This is much
faster than getting the integers one at a time. PUT 1%,A(10%),20% will put
AZ(10%) through AZ(19%Z) into the file. On a GET you need to be careful
that the array is large enough to hold all the bytes. For instance, if AZ

-20-



