I should mention that you can only put one interrupt at a given line. The
following program draws and fills in a square. It uses mode 4 which has
only two colors. But by changing color register 0 at two interrupts, you
can have a tri-colored square. Actually, you can put 8 colors plus the
background on the screen,

10 GRAPHICS 4%:COLOR 1%

20 PLOT 10%,5%

30 DRAWTO 60%,3%

40 DRAWTO 607 ,45%

50 DRAWTO 10%,45%

60 FILL 10%,5%

70 SETINT@ 07,16%,53270%,7%*16%+8%
80 SETINT@ 1%,32%,53270%,12%%16%+8%
90 GOTO 90

Lines 10 through 60 set the graphics mode and draw a rectangle. Lines 70
and 80 set two display list interrupts. For all of the graphic modes, the
first three display list lines (0, 1, and 2) are blanks. That is, the 16% at
line 70 sets a display list interrupt at display list line 16, which is
screen line 13, At that line, color register 0O is switched from red to
blue. At screen line 29, color register O is again changed; this time to
green. Note that the change does not occur until the end of the line on
which the interrupt is set. This is to avoid making a change during a line.
The change from red to blue occurs at the start of line 14, and the switch
to green at the start of line 30.

You might wonder why you didn't need to reset the color back to
reddish-orange. The reason is that during a vertical blank (at the end of
a display frame), all the color registers, as well as the alternate
character set locations, are reset from special memory locations.

Before trying the above example, you will need to append the display list
interrupt subroutines. Like PRINT USING, there isn't enough room to fit in
these special routines. To use them, insert a Master disk (or another disk
with the program) and then type APPEND DLISTINT.APP.

To remove an interrupt, set the last three integerexpressions to zero., The
following command removes interrupt 1:

SETINT@ 17,0%,0%,0%

CINT@

Format:

CINT@ integerexpression,integerexpression

The first integerexpression is the identifying number of the interrupt.
CINT@ is used to change the value which is stored when the interrupt
occurs, You can use CINT@ only after SETINT® has been used., The second

integerexpression gives the new value to be stored by the interrupt. You
could use SETINT@ itself to change this value; however, SETINT@ has to wait
until just the right point in the display to put the interrupt into place.
CINT@ is much faster because it can make an immediate change.

-51-



