100 INPUT TZ

110 MACHINE 200

120 CODE"INC":CODEL(TZ):CODE"BNE,@130,INC":CODEL(TZ+1)
130 CODE"RTS" :
200 PRINT TZ

Let's see how it works. On line 120, INC adds one to the number at the
memory location specified by the following two bytes. CODEL generates the
two byte address of the lower order 8 bits of TZ. Thus, the lower order
part of TZ is increased by one. If the result is non zero, we are done and
BNE causes a branch to line 130, If INC causes a zero, we have a carry and
must add one to the high order part of T#Z. The CODEL(TZ+1) generates the
two byte code for one plus the address of TZ (for the high order part of
T%Z). In another example, the program stores zero in all elements of the
array AZ:

100 DIM AZ(5) .

110 TZ=ADR(AZ(0%))

120 MACHINE 200

130 CODE"LDYIM,!11,LDA":CODEL(TZ):CODE"STAZ,EQ,LDA"
140 CODEL(TZ%+1):CODE"STAZ,E1,LDAIM,O"

150 CODE"STAIY,EO,DEY,BPL,@150,RTS"

200 END

At line 110 we set TZ equal to the address of AZ(0%Z), which is the first
element of the array. There are six elements in the array and therefore,
12 locations that we must zero. Remember, each integer takes up two bytes
of memory. At line 120 we first load the Y register with 11. Note the !
symbol in front of the 11. Normally, the CODE command expects assembly
language mnemonics or hex numbers. Any number preceded by !, however, is
assumed to be a decimal number.

Next we load the low order part of T%Z (the low order part of the address of
A%Z (0%)), and then store it in the zero page location EO. Note that any
mnemonic ending in a 'Z' refers to a zero page location and needs only one
hex byte following it to specify the location. Next we get the high order
byte of TZ and store this in zero page location El. Finally on line 140, we
load the accumulator with O.

At line 150, STAIY is a store indirect command. The EO immediately
following it tells us the address where we are to store the accumulator;
the address is the value in the Y register plus the number stored in EO
(low order part) and El. In line 140 we stored T%, and thus the address of
A%Z(0%Z) in EO and El1. The Y register starts at 11 and therefore, we will
store zero in the address of AZ(0%Z)+11. The loop at 150 stores zero in all
12 bytes of the array A%Z. Note that an assembly language subroutine may
use only the zero page locations from D4 to FF.

WARNING: If you make a mistake in assembly language code, the system might

hangup. Even BREAK may not get you out of it. Therefore, be sure to save
your program before running it.

-55_



